
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 276 (2004) 1065–1080

Diagnosis of mechanical fault signals using continuous
hidden Markov model

Jong Min Leea, Seung-Jong Kima, Yoha Hwanga,*, Chang-Seop Songb

aTribology Research Center, Korea Institute of Science and Technology, Songbuk Hawolgokdong 39-1,

Seoul 136-791, South Korea
bSchool of Mechanical Engineering, Hanyang University, 17 Haengdang, Sengdong, Seoul 133-791, South Korea

Received 11 April 2003; accepted 15 August 2003

Abstract

Hidden Markov Model (HMM) has been actively studied in speech recognition since 1960s and
increasingly used in many other fields. However, its application to mechanical engineering has been very
limited. HMM is not only very accurate and robust in analyzing signals but also can be a very powerful
method of predicting target system’s condition change. In this paper, continuous HMM (CHMM) has been
tuned to be used in mechanical signal analysis and applied to diagnose of various mechanical signals
including rotor fault signals. The results show HMM’s big potential as an intelligent condition monitoring
tool based on its accuracy, robustness, and forecasting ability.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Hidden Markov Model (HMM) has been a dominant method in speech recognition since 1960s
and become popular in various areas in last decade. The increasing popularity of HMM is based
on two facts; rich mathematical structure and proven accuracy on critical applications [1]. It has a
doubly embedded stochastic process with an underlying stochastic process that can be observed
through another set of stochastic processes. This structure of HMM is useful for modeling a
sequence that does not look like a stochastic process but has a hidden stochastic process.
Although it has become popular in various areas like signal analysis and pattern recognition, its
use in mechanical engineering field has been very limited.
In this paper, the potential of the HMM, especially continuous HMM (CHMM) which is the

HMM of a vector sequence, for intelligent machine condition monitoring has been studied. In the
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intelligent machine condition monitoring, expert system, neural network, and fuzzy method are
generally used as advanced techniques. However, their accuracies are often unreliable and they
also have their own problems to be widely used. In an expert system, complex algorithm has to be
updated by an experienced engineer for every target system. Neural network method needs
training patterns of all failure modes of the target system and has to be learned again to add other
failure modes. Fuzzy system generally has difficulties in selection of suitable membership function
for target system. HMM also needs patterns for every symptom of the system, however, new
symptom can be simply trained and added to existing pattern library. It makes a decision through
a statistical process, which is basically stable and robust. So once symptoms are well trained, it
makes a very accurate decision. HMM also has a very good trend forecasting ability, which is
essential for early warning.
Among applications of HMM to mechanical signals, Smyth has used CHMM for antenna

pointing system’s fault detection and showed that CHMM is more accurate than neural network
and Gaussian classifier, however, his method is more like a Markov chain than a CHMMmethod
[2]. Bunks suggested that HMM could be a very good tool to monitor helicopter gearbox failures,
but did not apply it to real model [3]. Ertunc claimed that he had used CHMM for drill wear
monitoring and achieved a good result, however he did not specify his CHMM method [4].
Kwon applied discrete HMM (DHMM) which is the HMM of a symbol sequence to identify
accident patterns in nuclear power plant and showed its robustness [5]. The authors have
successfully applied CHMM method using AR for feature vector for chatter signal analysis and
forecasting [6].
According to the authors’ own research, characteristic vectors of mechanical failure signals

have very small dispersion and this makes it very difficult to get statistical characteristics of some
groups which have no or very small number of vectors [6]. This often makes the calculation blows
up. It has turned out that this problem is common in mechanical signal analysis so authors have
made several modifications to conventional CHMM algorithm. Scaled forward/backward
variables and initialization of CHMM parameters using maximum distance clustering method
were used. Low threshold and option of setting off-diagonal element’s value to zero in covariance
matrix were also introduced. The authors also have derived all equations used for CHMM
training to use multiple observation vector sequences. CHMM method with AR coefficients was
used to detect and predict chatter of a lathe and CHMM method with spectrum and filter bank
was used to diagnose various rotor failures. CHMM method’s accuracy and early trend detection
ability have been proved with experimental data.

2. Procedure of CHMM training and fault diagnosis

Fig. 1 shows the general procedure of using CHMM in diagnosis. First, feature vector
extraction method has to be selected. This is a very important step because the feature vector
should suitably represent the information hidden in the raw data. For example, if AR model is
selected, then all model parameters like model order have to be carefully selected to correctly
represent the signal characteristics. The next step is training on HMM. In this step, model
structure has to be selected. The model structure includes the numbers of state and mixture and
the structure of transition matrix, like ergodic model or left-to-right model [1]. Training patterns
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are also needed. So, signals for each symptom have to be sampled and converted into feature
vectors. These feature vectors are training patterns. After that, the best CHMM for each symptom
is trained. Using this step, all CHMMs for every symptom are calculated. The last step is fault
diagnosis. In this step, the log-likelihood of each trained CHMM on the sampled data of the
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Fig. 1. General procedure of using CHMM in diagnosis.

Fig. 2. Training procedure of CHMM.
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target machine is calculated and the model which has the highest log-likelihood is selected as a
fault symptom.

2.1. Training of CHMM

Fig. 2 shows training procedure of CHMM. Parameters of CHMM have to be decided first
and training patterns of interested symptoms are calculated. Then, random values are given
to the CHMM parameters and the initial parameters are calculated using segmental
k-means loop. Next, CHMM parameters are re-estimated until Baum–Welch algorithm
converges. Then model parameters of ith symptom are fixed. This procedure is repeated for
every symptom.

2.2. Diagnosis using CHMM

Diagnosis procedure is shown in Fig. 3. From the target machine that is to be monitored,
signals are sampled and feature vectors are extracted to get vector sequence. This vector sequence
is current pattern from the target machine. In the next step, log-likelihood of each trained CHMM
on the pattern is calculated. The model that has the highest log-likelihood is selected and it shows
the current condition of the target machine.
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3. CHMM algorithm for machine condition monitoring

To correctly model a robust CHMM, it is needed to use many observation vector sequences of a
fault simultaneously. However, previous CHMM researches have explained equations to handle
only a single observation vector sequence as in Refs. [1,7]. In this paper, all equations needed to
handle multiple observation vector sequences have been derived. CHMM algorithm also has been
tuned to handle mechanical fault signals and the maximum distance clustering method has been
developed to reduce iteration times of k-means clustering algorithm. This section explains all the
extensions and modifications in detail.

3.1. Definition of CHMM

Let us assume that there is a set of K observation vector sequences as shown below

O ¼ fOð1Þ;Oð2Þ;y;OðKÞg; ð1Þ

where OðkÞ ¼ fo,
ðkÞ
1 ; o,ðkÞ

2 ;y; o,ðkÞ
Tk
g is the kth observation vector sequence and o,

ðkÞ
t is the

D-dimensional tth observation vector of OðkÞ: To get CHMM which models statistical
characteristics of such vector sequences, N states and M mixtures are selected as

S ¼ fs1; s2;y; sNg; ð2Þ

X ¼

x11 x12 ? x1M

x21 x22 ? x2M

^ ^ & ^

xN1 xN2 ? xNM

8>>><
>>>:

9>>>=
>>>;

ð3Þ

where xnm is mth mixture of state sn: Number of state N and number of mixture M are selected by
rule of thumb. Then, CHMM can be expressed as

l ¼ ðp;A;C;m;UÞ: ð4Þ

If qt is a state at time t and P½�� is probability, parameters of CHMM, initial state probability
distribution p; state transition probability distribution A; mixture gain C; mean m; and covariance
U are defined as

p ¼ ½p1 p2 ? pN �T; pn ¼ P½q1 ¼ sn�X0;
XN

n¼1

pn ¼ 1; ð5Þ

A ¼

a11 a12 ? a1N

a21 a22 ? a2N

^ ^ & ^

aN1 aN2 ? aNN

2
6664

3
7775; aij ¼ P½qtþ1 ¼ sj j qt ¼ si�X0;

XN

j¼1

aij ¼ 1 8i; ð6Þ
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C ¼

c11 c12 ? c1M

c21 c22 ? c2M

^ ^ & ^

cN1 cN2 ? cNM

2
6664

3
7775; cnmX0;

XM
m¼1

cnm ¼ 1 8n; ð7Þ

m ¼

m,11 m,12 ? m,1M

m,21 m,22 ? m,1M

^ ^ & ^

m,N1 m,N2 ? m,NM

2
66664

3
77775; ð8Þ

U ¼

U11 U12 ? U1M

U21 U22 ? U2M

^ ^ & ^

UN1 UN2 ? UNM

2
6664

3
7775; ð9Þ

where m,nm is a D-dimensional mean vector and Unm is a D � D dimensional covariance matrix at
mixture xnm: If the probability density function (pdf) b

ðkÞ
t;n of observation vector o,

ðkÞ
t in state sn is

the Gaussian density function, the pdf is given as

b
ðkÞ
t;n ¼

XM
m¼1

cnm � b
ðkÞ
t;nm ¼

XM
m¼1

cnm �
expð
0:5ðo,ðkÞ

t 
 m,nmÞ
T � U
1

nm ðo,ðkÞ
t 
 m,nmÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2� 3:141592Þ2 � jUnmj
q ; ð10Þ

where b
ðkÞ
t;nm is the pdf of observation vector o,

ðkÞ
t at mixture xnm:

3.2. Scaled forward/backward and posteriori variables

For the calculation of likelihood P½OðkÞjl� to observe observation vector sequence OðkÞ from
CHMM l and re-estimation of CHMM parameters, iteration methods are generally used to
reduce calculation times. In this paper, forward/backward variables [1,6,7] and three different
posteriori variables [1,7] are used for this. To calculate forward/backward variable it is needed to
multiply probability repetitively, however, it often results in an underflow problem. Mechanical
signals usually have relatively very small dispersion of statistical property so this problem happens
very often. To prevent this problem, scaled forward/backward variables are used [1,7]. Forward
variables aðkÞt;n are defined as in Eq. (11) and scaled forward variables #aðkÞt;n are calculated inductively
as in Eqs. (12) and (13) using scale coefficients g

ðkÞ
t :

aðkÞt;n ¼ P½o,ðkÞ
1 o,

ðkÞ
2 ? o,

ðkÞ
t ; qt ¼ snjl�; ð11Þ

aðkÞ1;n ¼ pnb
ðkÞ
1;n;

g
ðkÞ
1 ¼

1PN
c¼1 a

ðkÞ
1;c

ðn ¼ 1; 2;y;NÞ;

#aðkÞ1;n ¼ g
ðkÞ
1 aðkÞ1;n; ð12Þ
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a
_ðkÞ

t;n ¼
XN

c¼1

#aðkÞt
1;cac;n

 !
b
ðkÞ
t;n ;

g
ðkÞ
t ¼

1PN
c¼1 a

_ðkÞ
t;c

n ¼ 1; 2;y;N

t ¼ 2; 3;y;Tk

 !
;

#aðkÞt;n ¼ g
ðkÞ
t a

_ðkÞ
t;n : ð13Þ

Then, the log observation likelihoods PðkÞ of each observation vector sequence OðkÞ and the log
observation likelihood of the set of them are expressed as

logðP½Ojl�Þ ¼ log
YK
k¼1

P½OðkÞjl�

 !
¼
XK

k¼1

logðPðkÞÞ ¼ 

XK

k¼1

XTk

t¼1

log g
ðkÞ
t : ð14Þ

If we define backward variables bðkÞt;n as in Eq. (15), scaled backward variables #bðkÞt;n are calculated
inductively as Eqs. (16) and (17) using scale coefficients g

ðkÞ
t of scaled forward variables.

bðkÞt;n ¼ P½o,ðkÞ
tþ1 o,

ðkÞ
tþ2 ? o,

ðkÞ
Tk

j qt ¼ sn; l�; ð15Þ

bðkÞTk ;n
¼ 1

#bðkÞTk ;n
¼ g

ðkÞ
Tk
bðkÞTk ;n

ðn ¼ 1; 2;y;NÞ; ð16Þ

b
_
ðkÞ
t;n ¼

PN
c¼1 an;cb

ðkÞ
tþ1;c

#bðkÞtþ1;c

#bðkÞt;n ¼ g
ðkÞ
t b

_
ðkÞ
t;n

n ¼ 1; 2;y;N

t ¼ Tk 
 1;Tk 
 2;y; 1

 !
: ð17Þ

Three kinds of posteriori variables are introduced to make it simple to re-estimate CHMM
parameters [1,7]. The first posteriori variable is likelihood gðkÞt;n in which qt is sn when CHMM l and
observation vector sequence OðkÞ are given. The second posteriori variable is likelihood xðkÞt;ij in
which qt is si and qtþ1 is sj: The third posteriori variable is likelihood gðkÞt;nm in which mixture rt at
time t is xnm under same condition. These three posteriori variables are expressed as

gðkÞt;n ¼ P½qt ¼ snjOðkÞ; l� ¼
#aðkÞt;n

#bðkÞt;nPN
c¼1 #a

ðkÞ
t;c

#bðkÞt;c

¼
XN

c¼1

xðkÞt;nc ¼
XM
m¼1

gðkÞt;nm; ð18Þ

xðkÞt;ij ¼ P½qt ¼ si; qtþ1 ¼ sj jOðkÞ; l� ¼
#aðkÞt;i aijb

ðkÞ
tþ1;j

#bðkÞt;nPN
c¼1 #a

ðkÞ
t;c

#bðkÞt;c

; ð19Þ

gðkÞt;nm ¼ P½qt ¼ sn; rt ¼ xnmjOðkÞ; l� ¼
#aðkÞt;n

#bðkÞt;nPN
c¼1 #a

ðkÞ
t;c

#bðkÞt;c

�
cnmb

ðkÞ
t;nmPM

c¼1 cncb
ðkÞ
t;nc

: ð20Þ
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3.3. Estimation of CHMM parameters

If multiple observation vector sequences for training are given and CHMM is defined as above,
the parameters of CHMM can be estimated as follows.

Initial estimation: To make the re-estimation converge to the global minimum rather than a
local minimum, the parameters of CHMM are initialized as follows [1,6,7]:
(1) Initialize arbitrarily the initial state probability distribution and the state transition

probability distribution subjected to the Eqs. (5) and (6). N observation vectors having the
largest distance value among all observation vectors o,

ðkÞ
t are selected as centers of each N state.

Then, all observation vectors are grouped into N groups by their distances to the selected N
centers. Next, for each group, M observation vectors in which each vectors having the largest
distance from their centers are selected as M mixture centers. Then observation vectors in each
group are re-grouped into M clusters based on their distance to M centers. The total feature
vectors are clustered into N � M and initial value of mean, covariance and mixture gain are
calculated using the following:

m,nm ¼ sample mean vector of the observation vectors classified in xnm;

Unm ¼ sample covariance matrix of the observation vectors classified in xnm;

cnm ¼
number of observation vector in xnm

number of observation vectors in sn

: ð21Þ

(2) Once OðkÞ is observed from CHMM l estimated by log-Viterbi algorithm, the best state
sequence q

ðkÞ�
t is calculated as follows. First, b

ðkÞ
t;n is calculated by Eq. (10) and CHMM parameters

are converted to log values as

*pn ¼ logðpnÞ ðn ¼ 1; 2;y;NÞ;

*b
ðkÞ
t;n ¼ logðbðkÞt;n Þ ðn ¼ 1; 2;y;N; t ¼ 1; 2;y;Tk; k ¼ 1; 2;y;KÞ;

*aij ¼ logðaijÞ ði ¼ 1; 2;y;N; j ¼ 1; 2;y;NÞ:

ð22Þ

Next, log values of the best score variable *dðkÞt;n and the best score argument array cðkÞ
t;n are

calculated recursively for each OðkÞ by

*dðkÞ1;n ¼ *pn þ *b
ðkÞ
1;n

cðkÞ
1;n ¼ 0

n ¼ 1; 2;y;N

k ¼ 1; 2;y;K

 !
; ð23Þ

*dðkÞt;n ¼ max1pipN ½*dðkÞt
1;i þ *ain� þ *b
ðkÞ
t;n

cðkÞ
t;n ¼ arg max1pipN ½*dðkÞt
1;i þ *ain�

n ¼ 1; 2;y;N

t ¼ 2; 3;y;Tk

k ¼ 1; 2;y;K

0
B@

1
CA: ð24Þ

Then, the best state sequence q
ðkÞ�
t is calculated using Eqs. (25) and (26) which are path

backtracking methods:

q
ðkÞ�
T ¼ sn� ; n� ¼ arg max

1pipN
½*dðkÞT ;i� ðk ¼ 1; 2;y;KÞ; ð25Þ

q
ðkÞ�
t ¼ sn� ; n� ¼ cðkÞ

tþ1ðq
ðkÞ�
tþ1 Þ ðt ¼ Tk 
 1;Tk 
 2;y; 1; 1pkpKÞ: ð26Þ
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(3) Estimate the CHMM parameters using segmental k-means clustering. Let us assume DðyÞ is
the Direc delta function as

DðyÞ ¼
1 if y ¼ 0;

0 if ya0:

(
ð27Þ

Then, the initial state probability distribution and the state transition probability distribution are
estimated as follows:

%pn ¼
PK

k¼1 Dðq
ðkÞ�
1 
 snÞ

K
ðn ¼ 1; 2;y;NÞ;

%aij ¼
PK

k¼1

PTk

t¼2 Dððq
ðkÞ�
t
1 
 siÞ þ ðqðkÞ�

t 
 sjÞÞPK
k¼1

PTk

t¼2 Dðq
ðkÞ�
t
1 
 siÞ

ði ¼ 1; 2;y;N; j ¼ 1; 2;y;NÞ: ð28Þ

Observation vectors grouped for each state in step 2 are re-grouped into M clusters in each state
following procedures in step (1). Then mean vector, covariance matrix and mixture gain for each
mixture are calculated as

%m
,

nm ¼
PK

k¼1

PTk

t¼1 Dððq
ðkÞ�
t 
 snÞ þ ðrðkÞt 
 xnmÞÞ � o,

ðkÞ
tPK

k¼1

PTk

t¼1 Dðq
ðkÞ�
t 
 snÞ

;

%Unm ¼

PK
k¼1

PTk

t¼1 Dððq
ðkÞ�
t 
 snÞ þ ðrðkÞt 
 xnmÞÞ � ðo,ðkÞ

t 
 %m
,

nmÞ � ðo,ðkÞ
t 
 %m

,
nmÞ

T

PK
k¼1

PTk

t¼1 Dðq
ðkÞ�
t 
 snÞ

n ¼ 1; 2;y;N

m ¼ 1; 2;y;M

 !
;

%cnm ¼
PK

k¼1

PTk

t¼1 Dððq
ðkÞ�
t 
 snÞ þ ðrðkÞt 
 xnmÞÞPK

k¼1

PTk

t¼1 Dðq
ðkÞ�
t 
 snÞ

: ð29Þ

(4) Iterate steps (2) and (3) until the distance measurement between the previously estimated
CHMM and the newly estimated CHMM becomes less than an error bound.
In this paper, maximum distance clustering method is used in step (1) to select values of mean

and covariance to improve convergence speed of segmental k-means clustering.
Re-estimation: With the initial estimation values derived by above method, Baum–Welch

algorithm [1,6,7] is used to re-estimate parameters of CHMM.
(1) After calculating the observation vector pdf using Eq. (10), scaled forward and backward

variables are calculated from Eqs. (12) and (13) and Eqs. (16) and (17), respectively. The
likelihood is calculated from Eq. (14).
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(2) Using three posteriori variables from step 1, the parameters of CHMM are re-estimated
using the following equations:

%pn ¼

PK
k¼1 g

ðkÞ
1;n

K
ðn ¼ 1; 2;y;NÞ; ð30Þ

%aij ¼

PK
k¼1

PTk
1
t¼1 xðkÞt;ijPK

k¼1

PTk
1
t¼1 gðkÞt;i

i ¼ 1; 2;y;N

j ¼ 1; 2;y;N

 !
; ð31Þ

%cnm ¼

PK
k¼1

PTk

t¼1 g
ðkÞ
t;nmPK

k¼1

PTk

t¼1

PM
c¼1 g

ðkÞ
t;nc

n ¼ 1; 2;y;N

m ¼ 1; 2;y;M

 !
; ð32Þ

%m,nm ¼

PK
k¼1

PTk

t¼1 g
ðkÞ
t;nmo,

ðkÞ
tPK

k¼1

PTk

t¼1 g
ðkÞ
t;nm

n ¼ 1; 2;y;N

m ¼ 1; 2;y;M

 !
; ð33Þ

%Unm ¼

PK
k¼1

PTk

t¼1 g
ðkÞ
t;nmðo

,ðkÞ
t 
 m,nÞ

2PK
k¼1

PTk

t¼1 g
ðkÞ
t;nm

n ¼ 1; 2;y;N

m ¼ 1; 2;y;M

 !
: ð34Þ

(3) Iterate above steps until the difference of likelihood of observation vector sequences from
re-estimated CHMM and previously estimated CHMM becomes less than an error bound.

3.4. Modified covariance matrix

Unlike speech signals, mechanical failure signals generally have relatively very small dispersions of
statistical properties especially when the number of training data set is small. In this case, the
determinant of the covariance matrix has very small value and pdf calculation using Eq. (10) often
becomes very difficult because of underflow problem. So it is often needed to modify covariance
matrix to enhance calculation efficiency at the cost of accuracy. One modified covariance matrix is
setting low threshold which replaces each covariance matrix component’s value less than the threshold
and other method is setting off-diagonal element’s value to zero assuming characteristic vector’s
elements are independent of each other [3,8]. If the degradation of CHMM’s accuracy is small, then
this modified covariance matrix can be effectively used to get pdf while avoiding numerical problems.

3.5. Application of improved CHMM method to a lathe chatter signal

CHMM method explained above is applied to mechanical signal to demonstrate its accuracy.
Acceleration signal at the tool post of a lathe was recorded while the cutting condition went
through from normal cutting to chatter as shown in the top graph of Fig. 4. The feature vector to
be used as an input to CHMM was derived as follows. Three different cutting conditions were
assumed and they are normal, transition, and chatter. Each cutting condition roughly corresponds
to the following stage, normal cutting stage (data points from 20,001 to 40,000), transition to
chatter stage (from 60,001 to 80,000) and chatter stage (from 98,880 to 118,879). 20,000 data
points of each period are blocked into 11 segments of 10,000 data points, with adjacent segments
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being separated by 1000 data points. 600 data points with 50% overlap over 10,000 points of each
segment were used to estimate AR(7) model. These 11 sequences of 32 vectors (7-dimensional)
were used as inputs for training three states one mixture CHMM of one category using diagonal
covariance matrix. For each category, same procedure was applied and three CHMMs, l1–l3;
were trained.
Three models derived by above training method were used to monitor cutting condition change

and the result is shown in Fig. 4. The bottom graph shows the log-likelihood change with time for
each model. As expected, the result clearly shows that each model has the highest log-likelihood at
each corresponding stage. The result also shows the forecasting ability of CHMM method. For
example, at around data point 50,000, the log-likelihood for model 1, l1; is still the largest value,
however, the log-likelihood of model 2, l2; shows smaller value but an increasing trend. So at each
overlapping point, the rising and decaying log-likelihoods show not only the current condition
estimation but also underlying but significantly increasing condition change thereby proving the
powerful forecasting ability of CHMMmethod. Compared to previous result by authors using old
method which needed four models to identify whole signal [6], new improved method only needs
three models and it also shows distinctive overlap of conditions for much better prediction.

4. Diagnosis of rotor fault signals

4.1. Experiment using a rotor simulator

A rotor simulator was used to gather rotor fault signals. Fig. 5 shows the experimental setup; a
rotor which is driven by a motor and supported by two journal bearings. In addition to normal
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operation signal, six other fault signals were measured under artificially controlled fault
conditions. They are resonance, stable condition after resonance, bearing housing looseness,
misalignment, flexible coupling damage, and unbalance. Each failure condition is explained
below.
In resonance experiment, the motor was driven at near resonance frequency. Two disks were

used to simulate dynamic loading. Vertical displacement signals at point B near right bearing were
measured by a proximeter probe with 1 kHz sampling. Sampled data were converted to averaged
auto power spectrum with 50% overlapping and cascade auto power spectrum normalized by the
maximum value is shown in Fig. 6. Initially, the rotor was driven at around 1500 r:p:m: and after
2 h; the rotational speed was raised to 1998 r:p:m: wich is close to the resonance frequency at
2040 r:p:m: The system went through pseudo-resonant state and had stabilized after 35 min: This
phenomenon was caused by system’s characteristic change in which the resonance frequency had
been lowered below 1998 rpm: In normal operation, third order ð3�Þ and fifth order ð5�Þ
components were higher compared to first order ð1�Þ component and noise level was generally
high except at harmonic ð1�; 2�; 3�; 4�; 5�;yÞ components. But in resonance, both harmonic
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Fig. 5. Simulator setup for resonance and looseness tests.
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components and noise level became very low. When the rotor was stabilized after resonance,
second order ð2�Þ and third order ð3�Þ components became bigger and noise level went up,
however, fifth order ð5�Þ components had been reduced significantly. So in resonance experiment,
three modes were used which are normal, resonance, and stable condition after resonance.
The second experiment is looseness caused by loosening bolts on journal bearing housing.

R.p.m. was set to 1800 and same procedure as in resonance experiment was used and the resulting
cascade plot is in Fig. 7. The bolt on housing was tightened and system was operated for three
and a half hours. Then the bolt on right journal bearing housing was loosened by 45�; 90�; 135�;
and 180� for 4 h each. The measured vibration level was not proportional to bolt angle.
For 0� and 45�; there are 2� components and level of 3�; 4� and noise were relatively low. For
90�; 135� and 180�; levels of 2� and 3� became larger and noise level at low-frequency area
became higher. It was decided to use two models, normal and looseness.
The third experiment is misalignment of the shaft. Two disks were installed between two journal

bearings which support a motor-driven rotating shaft as in Fig. 8. Vertical displacement signal at
point B near right housing was measured. The right housing in Fig. 8 was raised by 4 mm and
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Fig. 7. Cascade plot of looseness test.

Fig. 8. Simulator setup for misalignment test and unbalance test.
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r.p.m. was set to 3500. The result is in Fig. 9. Compared to 1� component, 2�; 3� and 4�
components are higher and 3� is the most dominant. The noise level is high. After operation for
18 h; the flexible coupling between motor and shaft was damaged and sub-harmonic components
ð0:5�; 1:5�; 2:5�; 3:5�;yÞ emerged and 0:5� and 2:5� components became larger. The coupling
was completely damaged after 22 h and 10 min operation. Noise level is similar. Two models,
misalignment and coupling failure, were selected.
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Fig. 9. Cascade plot of misalignment test.

Fig. 10. Cascade plot of unbalance test.
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The fourth experiment was for unbalance at 3500 r:p:m: with same experimental setup as in
misalignment and the result is in Fig. 10. For the first 1 h; there was no unbalance and compared to
1� component, 3� component was higher and 2� and 5� components were relatively higher. The
noise level was also high. Unbalance mass of 10 g was added later to left disk. In this case,
3� component was the highest, however, 2�; 3�; 4� components and noise level were reduced and
5� component was reduced relatively much more. Two models, normal and unbalance, was selected.

4.2. Feature vector extraction and CHMM training

Filter bank was used to extract feature vector from auto power spectrum because use of all
spectrum information is computationally inefficient. Selected filter bank was combination of 8 band
pass filters. Each band pass filter had band of three lines and 10 orders from 0:5� to 5� by 0:5�
increment were selected as center orders. So spectrum was transformed into vector of order 10 by the
use of filter bank. All normalized averaged auto power spectrums were transformed into feature
vectors of order 10 through filter bank and by grouping consecutive 20 feature vectors, each group
became an observation vector sequence OðkÞ which was used for training and diagnosis for CHMM.
Seven models explained in Section 4.1 were used. The number of observation sequences for each

model were 32, 7, 9, 16, 16, 12, and 30 for each and it was used for training CHMM as in
Section 2. Diagonal covariance matrix was used for CHMM with one mixture and three states
(two for resonance operation).

4.3. Diagnosis results

The total observation vector sequences were diagnosed with seven CHMMs trained as in
Section 4.2. The average log-likelihood is shown in Fig. 11. Low threshold value was used to
prevent too small values. Each model shows very large likelihood value at its own condition and
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Fig. 11. Diagnosis results (mean of log-likelihood).
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very small values at other conditions. Although the result is based on controlled experiment, it is
clear CHMM can be a very good tool for mechanical system diagnosis.

5. Conclusion

As a very promising tool for intelligent condition monitoring, continuous HMM (CHMM) was
studied and applied to mechanical fault signals. To be effectively used for mechanical signals,
which generally have very small dispersion of statistical properties, several modifications have
been made to conventional CHMM. It includes initialization using a maximum distance clustering
method, use of filter bank, scaled forward/backward variables and diagonal covariance matrix
and modification of training equations for multiple observation vector sequences. The improved
accuracy of this CHMM algorithm was demonstrated with better result for lathe chatter signal
using three models compared to previous result which needed four models. The CHMM’s ability
of forecasting was also demonstrated.
CHMMwas also used for diagnosis of typical rotor failures. Sampled data from simulator were

converted into normalized power spectrum and feature vector was estimated using filter bank.
Experiment on seven models for four failure conditions has shown very accurate diagnosis result
thereby proving CHMM’s good potential as a monitoring tool.
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